A shell f inite element formulation to analyze highly deformable rubber

نویسنده

  • J. P. Pascon
چکیده

Abstract: In this paper, a shell finite element formulation to analyze highly deformable shell structures composed of homogeneous rubberlike materials is presented. The element is a triangular shell of anyorder with seven nodal parameters. The shell kinematics is based on geometrically exact Lagrangian description and on the ReissnerMindlin hypothesis. The finite element can represent thickness stretch and, due to the seventh nodal parameter, linear strain through the thickness direction, which avoids Poisson locking. Other types of locking are eliminated via high-order approximations and mesh refinement. To deal with high-order approximations, a numerical strategy is developed to automatically calculate the shape functions. In the present study, the positional version of the Finite Element Method (FEM) is employed. In this case, nodal positions and unconstrained vectors are the current kinematic variables, instead of displacements and rotations. To model near-incompressible materials under finite elastic strains, which is the case of rubber-like materials, three nonlinear and isotropic hyperelastic laws are adopted. In order to validate the proposed finite element formulation, some benchmark problems with materials under large deformations have been numerically analyzed, as the Cook’s membrane, the spherical shell and the pinched cylinder. The results show that the mesh refinement increases the accuracy of solutions, high-order Lagrangian interpolation functions mitigate general locking problems, and the seventh nodal parameter must be used in bending-dominated problems in order to avoid Poisson locking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-linear Shear Deformable Ancf Shell Element Using Continuum Mechanics Approach

In this investigation, a bi-linear shear deformable shell element is developed using the absolute nodal coordinate formulation for the large deformation analysis of multibody shell structures. The element consists of four nodes, each of which has the global position coordinates and the gradient coordinates along the thickness introduced for describing the orientation and deformation of the cros...

متن کامل

On the Geometrically Nonlinear Analysis of Composite Axisymmetric Shells

Composite axisymmetric shells have numerous applications; many researchers have taken advantage of the general shell element or the semi-analytical formulation to analyze these structures. The present study is devoted to the nonlinear analysis of composite axisymmetric shells by using a 1D three nodded axisymmetric shell element. Both low and higher-order shear deformations are included in the ...

متن کامل

Shell Mesh Based FE Analysis for Free Vibration Analysis of Radial Pneumatic Tire

The natural frequencies and mode shapes of pneumatic tires are predicted using a geometrically accurate, three-dimensional finite element modeling. Tire rubber materials and cord layers are represented independently using “shell element” available in COSMOS. The effects of some physical parameters such as the inflation pressure tread pattern, thickness of belts and ply angles to the natural ...

متن کامل

Modeling and grasping of thin deformable objects

Deformable modeling of thin shell-like and other objects have potential application in robot grasping, medical robotics, home robots, and so on. The ability to manipulate electrical and optical cables, rubber toys, plastic bottles, ropes, biological tissues, and organs is an important feature of robot intelligence. However, grasping of deformable objects has remained an underdeveloped research ...

متن کامل

Bézier Shell Finite Element for Interactive Surgical Simulation

There is a strong need, in surgical simulations, for physically based deformable model of thin or hollow structures. The use of shell theory allows to have a well-founded formulation resulting from continuum mechanics of thin objects. However, this formulation asks for second order spatial derivatives so requires the use of complex elements. In this paper, we present a new way of building the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013